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of RADARSAT-1 Data for Surface

Soil Moisture Estimation
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Abstract—The present paper focuses on the ability of currently
available RADARSAT-1 data to estimate surface soil moisture over
an agricultural catchment using the theoretical integral equation
model (IEM). Five RADARSAT-1 scenes acquired over Navarre
(north of Spain) between February 27, 2003 and April 2, 2003 have
been processed. Soil moisture was measured at different fields
within the catchment. Roughness measurements were collected in
order to obtain representative roughness parameters for the dif-
ferent tillage classes. The influence of the cereal crop that covered
most of the fields was taken into account using the semiempirical
water cloud model. The IEM was run in forward and inverse
mode using vegetation corrected RADARSAT-1 data and surface
roughness observations. Results showed a great dispersion be-
tween IEM simulations and observations at the field scale, leading
to inaccurate estimations. As the surface correlation length is the
most difficult parameter to measure, different approaches for
its estimation have been tested. This analysis revealed that the
spatial variability in the surface roughness parameters seems to
be the reason for the dispersion observed rather than a deficient
measurement of the correlation length. At the catchment scale,
IEM simulations were in good agreement with observations. The
error values obtained in the inverse simulations were in the range
of in situ soil moisture measuring methods (0.04 cm3 cm 3).
Taking into account the small size of the catchment studied, these
results are encouraging from a hydrological point of view.

Index Terms—Hydrology, integral equation model (IEM), soil
moisture retrieval.

I. INTRODUCTION

ACTIVE microwave (radar) remote sensing represents an
interesting alternative to classic point-based surface soil

moisture SM measuring techniques. The dependence of mi-
crowave scattering over bare soil surfaces on the dielectric con-
stant of soils allows the extraction of soil moisture informa-
tion from radar observations [1]. In addition, radar observations
cover large areas with a certain periodicity and have a high
spatial resolution. These characteristics make radar-based soil
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moisture estimation very attractive to domains like hydrology,
agronomy, and meteorology [2].

Radar-based SM retrieval has been intensively studied in
the last decades. Three main approaches have been generally
followed [3]: 1) empirical linear regression models relating the
backscattering coefficient to SM, which are valid for in-
variant roughness, vegetation, and scene acquisition conditions
[1]; 2) change detection techniques for monitoring SM dy-
namics, assuming that surface roughness and vegetation cover
change more slowly than SM does [2], [4]; 3) electromagnetic
scattering models that simulate the surface backscattering
process [5], [6]. Apart from those three main approaches, some
other techniques have been recently developed based on radar
observations acquired on multiple frequencies [7] or multiple
incidence angles [8], [9]. The multifrequency approach yields
good results [7], but currently there are no multifrequency
spaceborne radar sensors available. The approach using radar
observation-acquired at multiple incidence angles, is based
on the different response of rough surfaces with increasing
incidence angles. Although this approach has shown to be
valuable [8], [9], it can only be applied if radar observations are
available at two different incidence angles with the same soil
surface conditions.

The linear regression approach has been widely used, mainly
because of its simplicity [10], [11]. However, its empirical na-
ture and its sensitivity to surface roughness, vegetation or scene
configuration variations, particularly the incidence angle [3], re-
duce its applicability. Similarly, the change detection approach
requires the surface characteristics apart from SM to remain un-
changed and the scene parameters to be exactly the same [12]. If
identical scene parameters were needed, the revisit time of most
sensors would be on the order of several weeks, which is gen-
erally insufficient for most hydrological and agronomic appli-
cations. Apart from that, vegetation and surface roughness can
change dramatically over short time periods in agricultural areas
[3]. Therefore, it would seem that the application of electromag-
netic scattering models is the most suitable approach for the esti-
mation of SM for hydrological and agronomic applications over
agricultural areas, however, this approach requires additional
parameters, such as roughness, for each image acquisition.

Several models have been proposed for bare soil surface con-
ditions: empirical models [13], [14]; theoretical models, such
as the integral equation model (IEM) [5], [6]; and semiempir-
ical models [15]–[18]. The estimation of SM over vegetated sur-
faces is more complicated because the vegetation cover also in-
terferes in the backscattering process. In these cases the appli-
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cation of the radiative transfer principles has led to the devel-
opment of physically based models that, under certain circum-
stances, could be simplified to semiempirical algorithms such
as the water cloud model [19].

Even if empirical backscattering models performed correctly
in some cases [8], [20], they are site-dependent and therefore
only applicable under the same conditions they were developed
for. Theoretical models are thus preferable although they usu-
ally require a larger number of parameters, which are sometimes
difficult to estimate. At present, the IEM, a theoretical backscat-
tering model with the widest range of applicability, is the one
most frequently used for radar-based soil moisture retrieval [3].

However, the application of the IEM to natural conditions fre-
quently yielded poor results. Mostly, the reasons for this mal-
functioning could be related to the fact that the mathematical
description of the surface roughness used in the model did not
correctly represent natural surfaces [8], [21]. In addition, it has
been reported that an accurate field measurement of the required
roughness parameters, in particular the correlation length , is
extremely difficult to perform [21], [22]; causing the agreement
between IEM simulations and radar observations to be scant
[23]–[25]. Furthermore, the model seems to be more sensitive to
the roughness parameters than to the soil moisture content [26],
especially over smooth surfaces and wet conditions [7], causing
small inaccuracies in the measurement of the roughness param-
eters to be translated into erroneous soil moisture retrievals.

The main problems in the estimation of SM through radar
data using the IEM seem to be related to the sensitivity of the
model to the surface roughness parameters and their character-
ization. In the case of agricultural surfaces, roughness is pri-
marily related to tillage practices. Therefore, we will investi-
gate whether reference roughness parameters representative of
each tillage practice can be used for the retrieval of SM. This
would allow assigning one set of roughness parameters to fields
with a specific tillage. Such approach would therefore over-
come the need of performing roughness measurements simul-
taneously with each radar image acquisition, especially in the
case of winter cereal crops, where after sowing no tillage takes
place during the whole growing season. Under these conditions
surface roughness can be assumed to be constant.

The main objective of this paper is to assess the feasibility
of operational SM estimation through RADARSAT-1 data over
agricultural areas based on the inversion of the IEM. Two main
issues are addressed: 1) the application of the IEM considering
tillage representative surface roughness parameters at the field
scale and average roughness parameters at the catchment scale,
and 2) the correction of the influence that an early cereal cover
exerts on the SM estimation. In the following sections the test
site and the RADARSAT-1 data are described as well as the
methods applied. Finally, results are discussed and conclusions
are drawn.

II. MATERIALS

A. Test Site

The research was carried out over a small agricultural water-
shed located in the Spanish region of Navarre called La Tejería

Fig. 1. Location of La Tejería experimental watershed.

(Fig. 1). This watershed is part of the Experimental Agricultural
Watershed Network of Navarre, created by the local Govern-
ment of Navarre in 1993 and aimed at studying the impact of
agriculture on the hydrological resources.

The geographical coordinates of the watershed outlet are
N and W. The watershed covers ap-

proximately 160 ha with homogeneous slopes of about 12%,
with an altitude ranging from 496–649 m. Its climate is humid
submediterranean, with a mean annual temperature of 13 C.
The average annual rainfall is about 700 mm distributed over
approximately 105 days.

The watershed has been equipped with an automated mete-
orological and hydrological station. The station has provided
precipitation and flow discharge data on a ten minute basis and
daily water quality data (sediment yield, nitrate and phosphate
content and other agrochemicals) since 1994.

The most common soils are Tipic Xerochrepts, which are less
than 1 m deep. Those soils have clayey textures (43% clay,
5% sand, 52% silt) and cover most of the hillslopes. There are
also some areas of Calcixerollic Xerochrepts, which are slightly
deeper (1.0 to 1.5 m) and similar in texture; these appear on the
lower parts of the hillslopes. Finally, the valley bottoms are cov-
ered with Fluventic Xerochrept soils, which are deeper and are
silty clay loam in texture (37% clay, 16% sand, 47% silt).

The watershed is almost completely cultivated and the
hedgerows and streams are the only areas covered by natural
vegetation. During the experimental period, an emerging cereal
crop covered most of the fields of La Tejería watershed, except
for one Ploughed field and four other fields where vegetable
crops had been sown by scattering the seed over previously
rolled soils (Fig. 2, Table I). Apart from these fields, some other
small ones were covered by bushes and were not considered in
the present work. Those cereal fields that had been rolled after
sowing and, therefore, had a smoother surface were grouped in
a separate crop class called “Rolled cereal.” In both cases, the
cereal plants were in the 20–30 phenological stage according
to the Zadocks scale. Vegetables were very sparse and recently
germinated at the beginning of the experimental campaign.

B. Ground Measurements

1) Surface Soil Moisture Measurements: The SM of the top
10 cm of the soil was measured on each image acquisition day
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Fig. 2. Spatial distribution of crop classes observed over La Tejería watershed.
Monitored control fields appear outlined and numbered.

TABLE I
DESCRIPTION OF CROP CLASSES OBSERVED. THE TOTAL NUMBER OF FIELDS

AND AREA OF EACH CLASS IS SHOWN, AS WELL AS THE NUMBER

AND AREA OF THE MONITORED FIELDS

using a commercial Time Domain Reflectometry (TDR) instru-
ment (TRIME FM-3, IMKO GmBH) connected to a portable
three-rod probe.

SM was sampled following a stratified random sampling
scheme along the catchment, in order to obtain accurate catch-
ment SM averages. Sixty sampling points were monitored each
day and three TDR measurements were averaged out at each
sampling point in order to reduce the small scale SM variability
and the probe error. Apart from that, 16 control fields were
selected (Fig. 2) where a minimum of three sampling points
was measured. The area of those fields ranged from 1.3 (field
196) to 11.1 ha (field 511). Wooding et al. [27] found that
a minimum field size of 1 ha would give a variability in the
estimated backscatter smaller than 0.25 dB on ERS-1 scenes,
overcoming the effects of the SAR speckle. On the other
hand, very large fields can show differentiated in-field SM
patterns due to their great spatial variability, complicating the
calculation of representative average SM values. Biftu and Gan
[28] found that the maximal length over which SM behaved
homogeneously is 300 m.

Average catchment SM values were calculated through a
weighted mean taking into account the crop and soil classi-
fication. The SM values observed reflected rainfall patterns
throughout the experimental campaign (Fig. 3).

Fig. 3. Ground measured soil moisture (SM) data during the experimental
campaign, rainfall distribution (bars) and discharge data (line). Dates are given
in dd/mm/yy format.

TABLE II
MEASURED ROUGHNESS PARAMETERS FOR EACH CROP CLASS. THE

NUMBER OF COLLECTED PROFILES PER CLASS IS SHOWN (N), AS

WELL AS THE AVERAGE AND STANDARD DEVIATION OF THE

TWO ROUGHNESS PARAMETERS: s AND l

2) Surface Roughness Measurements: In the present re-
search, surface roughness was measured using a 1-m-long
needle profiler with a sampling interval of 2 cm. The accuracy
of surface roughness measurements, for SAR applications,
has often been related to the length of the profile measuring
device [21], [29], suggesting that long profiles (up to 10 m
or longer) are needed in order to achieve a reasonable accu-
racy. However, such measurements are difficult and costly to
perform and reduce the applicability of radar remote sensing
soil moisture estimation. Davidson et al. [30] investigated the
validity of 1-m-long surface roughness profiles and proposed a
standardized procedure for the utilization of this kind of profile
that yielded acceptable results over medium surface roughness
conditions.

Profiles were collected parallel and perpendicular to the
tillage row direction. According to Ulaby et al. [31], the
random component of surface roughness that influences the
backscattering process should be separated from any periodic
pattern, such as a row structure. This periodic patter will also
influence the backscattering through the local slope, particu-
larly at high incidence angles and over deeply furrowed fields.
In the case of the fields observed the surface was assumed
to be isotropic because no clear row pattern was evidenced
except for the Ploughed field (field 232). The surfaces observed
were assumed to be correctly described as stationary, randomly
rough surfaces, characterized through a single spatial scale
in both the horizontal and vertical directions. Therefore, the
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TABLE III
VALUES OF THE TWO ROUGHNESS PARAMETERS: STANDARD DEVIATION OF SURFACE HEIGHTS (s) AND CORRELATION LENGTH (l), MEASURED

BY OTHER AUTHORS OVER DIFFERENT TILLAGE CONDITIONS. TWO VALUES SEPARATED BY “–“ INDICATE GIVEN MINIMUM AND MAXIMUM

VALUES FOR EACH CLASS, IN OTHERS THE AVERAGE VALUE PLUS/MINUS THE STANDARD DEVIATION OF THE MEASUREMENTS IS GIVEN

profiles were processed following the procedure proposed in
[30] to extract two classic roughness parameters: (standard
deviation of surface heights) and (surface correlation length)
[1].

Surface roughness was considered to be invariable in time be-
cause no tillage was performed in the experiment period and the
intensity of the precipitation events observed was low. The au-
tocorrelation functions calculated were closer to the exponential
than to the Gaussian function.

In all, 88 profiles were collected over the catchment. The
number of profiles acquired per class depended on the number
of fields belonging to each class (Table II). The catchment av-
erage and values were 1.00 and 3.47 cm with standard devia-
tions of 0.13 and 2.87 cm, respectively. The catchment average

value was calculated as the weighted average of the different
classes, and the average value was derived from the average
autocorrelation function of the different classes. The roughness
parameters per class measured are detailed in Table II and show
similar values to those observed in the literature (Table III).

3) Vegetation Cover Measurements: Vegetation parameters
were not measured in La Tejería during the experiment period.
Instead, crop parameters recorded over a neighboring experi-
mental area and a Landsat-7 ETM+ scene acquired on March
17, 2003 were used to characterize the vegetation cover of the
vegetated fields in the catchment (corresponding to the classes
“Cereal” and “Rolled cereal”). The neighboring experimental
site, located 25 km away from La Tejería, showed a winter cereal
crop that was sown on the same dates. The soil conditions and
climate were also very similar to those of La Tejería. Vegetation
parameters, i.e., vegetation water content and leaf area
index (LAI), were measured periodically (January 17, March
18, and April 8, 2003) and afterward linearly interpolated for
the five image acquisition days (Table IV). Those interpolated
values were assumed to be representative of the average condi-
tions of the vegetated fields in La Tejería.

To account for the vegetation cover variability between the
different vegetated fields in the catchment, the NDVI, which can
be used as a proxy of vegetation biomass [34], was derived from
the Landsat-7 ETM+ scene. The scene was processed using
classical techniques. First, the image was orthorectified using
ground control points and a digital elevation model (DEM).
Then, the atmospheric absorption was corrected following the

TABLE IV
ESTIMATED AVERAGE CEREAL COVER PARAMETERS FOR EACH IMAGE

ACQUISITION DATE FROM THE PARAMETERS MEASURED IN A

NEIGHBORING EXPERIMENTAL SITE. DATES ARE GIVEN

IN dd/mm/yy FORMAT

improved dark object subtraction method [35]. Afterward, the
reflectivity of the different bands in the image was calculated
and the NDVI was obtained. The average NDVI value calculated
in the vegetated fields of the catchment was 0.550. This value
was assumed to correspond to the estimated vegetation param-
eters for that date from the neighboring site, i.e., LAI
and kg m . Afterward, the vegetation param-
eters for each field and date were calculated based on two as-
sumptions: 1) the temporal evolution of the individual fields
can be correctly represented by the interpolated average values
for each date, and 2) the variability between the different fields
during the experiment period can be reflected by the ratio be-
tween the NDVI values of each field and the average NDVI
value obtained from the Landsat scene. Therefore, the following
expression was used to calculate the value of each field and
date:

NDVI NDVI
(1)

where is the vegetation moisture content of the field
on the day , NDVI is the NDVI value of the field as
observed in the Landsat-7 ETM+ scene of the March 17, 2003,

is the average moisture content of the vegetated fields on
the day , and NDVI is the average NDVI of the vege-
tated fields as observed in the Landsat scene.

The same approach was used to calculate the LAI values for
each field and date. Calculated values of and LAI are shown
in Table V. Although the validity of the approach used to obtain
the vegetation parameters may be debatable, we think that the
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TABLE V
ESTIMATED CEREAL COVER PARAMETERS FOR EACH CONTROL FIELD AND IMAGE ACQUISITION DATE. CATCHMENT

AVERAGE PARAMETERS ARE ALSO SHOWN. DATES ARE GIVEN IN dd/mm/yy FORMAT

hypotheses assumed did no lead to significant errors as the ex-
periment period was very short (34 days), and the conditions of
the neighboring site, regarding crop growth, correctly reflected
the conditions of La Tejería catchment. However, we suppose
that if the vegetation parameters obtained by these means are
used for further calculations there will be a certain level of in-
accuracy that needs to be taken into account when interpreting
the results.

If two or more optical images were available, one acquired
at the beginning of the cereal growing cycle and one at crop
maturity, a similar approach could be developed assuming that
the NDVI is a good indicator of the vegetation parameters.
Such an approach could be useful for evaluating and correcting
the attenuation of microwave radiation by cereal canopies in
an operational way without needing to perform any ground
measurements.

C. Radarsat-1 Scenes

Five RADARSAT-1 SGF scenes were acquired over the
Navarre region during spring 2003. RADARSAT-1 offers the
possibility of decreasing the revisit time from the standard 24
days cycle to one or two weeks by combining different beam
modes and ascending and descending passes. In this case, five
scenes were acquired in a period of approximately one month.
This fact can be of great interest for the monitoring of rapidly
changing terrain variables such as SM. Beam modes S1 and
S2 were selected for their lower incidence angles. At low inci-
dence angles vegetation-induced attenuation, as well as surface
roughness influence, are minimized, so that those scenes are
more appropriate for soil moisture retrieval [1]. Besides, the
RADARSAT-1 configuration (C-band and HH polarization), at
low incidence angles, has proved to be particularly well suited
for SM research over cereal canopies where vertically polarized
waves are more intensively attenuated [28], [36]. Table VI
shows the main characteristics of the RADARSAT-1 scenes
used in this study.

The five RADARSAT-1 SGF scenes were converted from
16-bit gray levels to values following the standard approach
[37]. The local incidence angle, required for the calculation of

TABLE VI
MAIN CHARACTERISTICS OF RADARSAT-1 SGF SCENES USED

, was computed taking into account the slope and aspect of
each pixel [38].

Scenes were geocoded following the standard ground control
point approach, maintaining the root mean square error (rmse)
below one pixel. Despite being four-look images, the speckle
was still apparent, so the images were filtered for speckle re-
duction using a 7 7 window adaptive Gamma MAP filter [39].
Finally, values corresponding to each ground sampling point
were calculated and field and catchment average values were
computed.

III. METHODOLOGY

A. Correction of the Influence of the Vegetation Cover

The ability of microwaves to penetrate through a vegetation
canopy depends on the wavelength, incidence angle and polar-
ization as well as on the characteristics of the vegetation canopy
[31]. The IEM was formulated for bare soil conditions, thus its
application to vegetated surfaces is only possible in the case of
weakly developed canopies that do not interfere in the backscat-
tering process. This is more likely to happen at low incidence
angles and long wavelengths [1].

Previous studies reported that a wheat cover 10–15 cm high
did not significantly affect the backscattering process at an in-
cidence angle of 23 and C-band [36]. However, in the case of
more developed cereal crops the can be attenuated by the
canopy causing severe discrepancies between IEM simulations
and observed values. In terms of the NDVI, values higher
than 0.1 have been reported to significantly affect as ob-
served on ERS-1 data [40]. More recently, a threshold in terms
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Fig. 4. IEM model simulations plotted against observations. (a) Forward IEM applied at the field scale and (b) at the catchment scale. (c) Inverse IEM applied
at the field scale and (d) at the catchment scale. Symbols represent different crop classes and dates as follows. At the field scale, (a) and (c), circles correspond to
the class “Cereal.” (Small open circle) 27/02/03. (Large open circle) 06/03/03. (Small dark circle) 23/03/03. (Large dark circle) 30/03/03. (Gray circle) 02/04/03.
Triangles to the class “Rolled cereal.” (Small open triangle) 27/02/03. (Large open triangle) 06/03/03. (Small dark triangle) 23/03/03. (Large dark triangle) 30/03/03.
(Gray triangle) 02/04/03. Squares to the class “Rolled vegetables.” (Small open square) 27/02/03. (Large open square) 06/03/03. (Small dark square) 23/03/03.
(Large dark square) 30/03/03. (Gray square) 02/04/03. Diamonds to the class “Ploughed.” (Small open diamond) 27/02/03. (Large open diamond) 06/03/03. (Small
dark diamond) 23/03/03. (Large dark diamond) 30/03/03. (Gray diamond) 02/04/03. At the catchment scale, (b) and (d), circles are used representing the different
dates as follows. (Small open circle) 27/02/03. (Large open circle) 06/03/03. (Small dark circle) 23/03/03. (Large dark circle) 30/03/03. (Gray circle) 02/04/03.

TABLE VII
ROOT MEAN SQUARE ERROR (rmse) VALUES OBTAINED IN THE IEM
SIMULATIONS. � rmse REFERS TO THE ERRORS OBTAINED IN THE

FORWARD MODELING AND SM rmse REFERS TO THE ERRORS

OBTAINED IN THE INVERSE MODELING

of canopy moisture content of 0.5 kg m has been
proposed for an estimation of SM based on C-band radar data
without taking into account the vegetation influence [41].

In the present research, even if the cereal canopy of the vege-
tated fields was at early development stages, the estimated MV
values (Table V) and NDVI observations suggested that the veg-
etation cover could influence the backscattering response partic-
ularly at the end of the experiment period. Therefore, a semiem-
pirical approach, based on the water cloud model [20], was fol-
lowed in order to correct the observations over vegetated
fields for the influence of the canopy [3].

The water cloud model represents the canopy as a cloud of
identical discrete scatterers that attenuates the microwave ra-

TABLE VIII
GROUND MEASURED SURFACE ROUGHNESS PARAMETERS AND l

VALUES CALCULATED FROM (9) AS PROPOSED IN [30]

diation and also contributes to the total canopy backscatter as
shown in

(2)

where is the total backscattering coefficient observed
from the canopy in square meters per square meter (m m ),

is the vegetation contribution to the total backscat-
tering depending on the incidence angle, and is the
contribution of the soil that is attenuated twice by the canopy
through its loss factor .

Because in our study, the canopy is at an early development
stage, was considered to be negligible, assuming that
the canopy only influenced the backscattering by attenuating the
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Fig. 5. IEM model simulations plotted against observations. Surface correlation length (l) values used in these simulations are obtained after (9). (a) Forward
IEM applied at the field scale and (b) at the catchment scale. (c) Inverse IEM applied at the field scale and (d) at the catchment scale. Symbols represent different
crop classes and dates as in Fig. 4.

TABLE IX
ROOT MEAN SQUARE ERROR (rmse) VALUES OBTAINED IN THE IEM

SIMULATIONS. � rmse REFERS TO THE ERRORS OBTAINED IN THE FORWARD

MODELING AND SM rmse REFERS TO THE ERRORS OBTAINED IN THE

INVERSE MODELING. l VALUES CALCULATED FROM (9) WERE USED

radiation [42]. The vegetation loss factor can be presumed to
depend solely on and the incidence angle as

(3)

where is an empirical constant. Shifting to decibel units and
assuming that depends linearly on SM, (4) is ob-
tained

SM (4)

Once the water cloud model is fitted, the backscattering
values observed can be corrected by subtracting the vegetation
attenuation component from the following canopy backscat-
tering coefficient, leading to a backscattering coefficient for a
bare soil surface as proposed in Taconet et al. [42]:

(5)

Fig. 6. Sensitivity of the backscattering coefficient � to the surface
correlation length l at each class, according to the IEM model. The following
acquisition parameters have been used: C-band (5.3 GHz), HH polarization, and
20 incidence angle. The surface soil moisture has been set to 0.25 cm � cm ,
and the surface roughness correlation function has been assumed to be
exponential. Measured s values have been used for each class (Table II).

B. Integral Equation Model [5], [6]

In the present research, a simplified version of the IEM
was applied which considers only the single-scattering term
of the backscattered wave [26]. This version is applicable to
surfaces with small to moderate roughness conditions or at
low to medium frequencies. The validity condition for this
approximation can be expressed by and with
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the wavenumber and the surface roughness slope, which
for exponentially autocorrelated surfaces equals .

The IEM calculates the backscattering coefficient from a sur-
face given its roughness parameters , its dielectric constant

, and the scene acquisition parameters: frequency, incidence
angle, and polarization. In the present research, was calculated
through the dielectric mixing model [43] using SM, soil texture,
and temperature data. For the formulation of the IEM version
used in this paper, we refer to previous publications [26], [28].

From the hydrological point of view, it is more interesting
to invert the IEM for the dielectric constant given the observed

value, the surface roughness and the scene acquisition pa-
rameters. In this paper the inversion is performed through a
Newton–Raphson iterative scheme.

IV. RESULTS

A. Correction of the Influence of the Vegetation Cover

As explained above, the influence of the vegetation cover
on the needs to be taken into account. The semiempirical
water cloud model was fitted at the catchment scale (6) and
at the field scale to fields corresponding to vegetated classes.
Under different surface roughness conditions, the model (4) was
fitted separately to each cereal class, yielding (7) in the case
of “Cereal” fields and (8) in the case of “Rolled cereal” fields.
The backscattering values observed were corrected solving the
following:

SM

(6)

SM

(7)

SM

(8)

B. IEM Simulations

The IEM was applied at the field and catchment scale. It was
run in its forward mode obtaining estimates from surface
parameters [Fig. 4(a) and (b)]. Afterward, the inverse algorithm
was applied yielding SM values [Fig. 4(c) and (d)]. Results were
evaluated in terms of the root mean square error rmse between
estimated and observed values in decibels, and, in the case
of inverse modeling, in volumetric SM units, cubic meters per
cubic meter (cm cm ) (Table VII).

In general, results show a significant agreement between
IEM estimates and observations at the catchment scale, with
error values of 0.616 dB or 0.043 cm cm . However, at the
field scale, errors were much higher and no accurate estimations
were achieved. The field corresponding to the class “Ploughed”
showed no correlation between simulations and observations;
moreover, the inverse model could not be solved. This behavior
can be explained by the difficulties encountered for adequately
measuring the surface soil moisture content on such a rough
surface and the great variability of the roughness parameters
measured (Table II).

TABLE X
CALIBRATED CORRELATION LENGTH VALUES. THE AVERAGE VALUE

AND STANDARD DEVIATION FOR EACH CLASS ARE SHOWN. EXCEPT

FOR THE CASE OF THE “PLOUGHED” CLASS, TWO CALIBRATED

VALUES WERE OBTAINED FOR EACH CLASS l and l

Fig. 7. Relation between s measurements and calibrated l values for each
class. (a) shows l values, and (b) shows l values. The error bars
represent the standard deviation of the average l value. Two curves have been
fitted: exponential (continuous line) according to Baghdadi et al. [24] and
power (dotted line) according to Baghdadi et al. [25].

Apart from that, it must be noted that due to the reduced sen-
sitivity of to the dielectric constant in wet conditions, a small
error in the estimate is translated into a much higher SM error
in wet soils than in drier ones, leading to an overestimation of
the SM content in wet conditions [Fig. 4(c)].

The cause of the inaccuracy observed at the field scale can
be partly due to a deficient measurement of the surface rough-
ness parameters, in particular the surface correlation length .
Other researchers have outlined the difficulties of adequately
measuring [24]–[26], [30]. Moreover, the characteristics of the
profiler used in this experiment period are not those most suit-
able for an accurate measurement of .
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Fig. 8. IEM model simulations plotted against observations. Surface correlation length (l) values used in these simulations correspond to class average l

values. (a) Forward IEM applied at the field scale and (b) at the catchment scale. (c) Inverse IEM applied at the field scale and (d) at the catchment scale. Symbols
represent different crop classes and dates as in Fig. 4.

Some recent studies focused on the possibility of obtaining
estimates from values that are easier to measure accurately

[24], [25], [30]. For instance, Davidson et al. [30] discussed the
joint statistical properties of parameters and . They observed a
linear relation between both parameters that was significant for
a wide range of roughness conditions over agricultural surfaces

(9)

Such a relation can be a valuable tool to translate estimates,
which are relatively easy to obtain from a limited set of profile
data, into corresponding values [30].

On the other hand, Baghdadi et al. [24] performed an em-
pirical calibration of the parameter from a set of radar obser-
vations and soil parameter measurements, and observed an ex-
ponential relationship between the calibrated values and the

measurements for each radar configuration. In a more recent
publication, Baghdadi et al. [25] extended their study to obser-
vations in different sensor configurations showing that the cal-
ibrated parameter depended not only on but also on the ac-
quisition parameters.

In the present research both approaches have been tested in
order to obtain more accurate values for each roughness class.
First, values calculated with (9) (Table VIII) were used as
input for the next IEM simulations. In this case, the results im-
proved slightly compared to those obtained with ground mea-
sured l values, except for the fields corresponding to the class
“Cereal” (Fig. 5 and Table IX). However, when using this
relationship, the “Ploughed” field fell outside the IEM validity
range . At the catchment scale, results also improved
slightly from an rmse of 0.043 cm cm to 0.036 cm cm .

In order to test the approach proposed by Baghdadi et al. [24],
[25], the IEM was solved for based on observations and
SM and measurements through a Newton–Raphson scheme.
Depending on the surface characteristics and the sensor con-
figuration, the IEM can lead to two valid values for a given

observation, this behavior was observed in all the fields
of La Tejería apart for the “Ploughed” one (Fig. 6). Calibrated

values were obtained for each roughness class and acquisi-
tion date. Average values were computed from the calibrated
values for the five acquisitions. A catchment average calibrated

value was also calculated. These average values and their stan-
dard deviations are given in Table X. As mentioned before, for
some classes two solutions have been found, referred to as
and for respectively the lowest and highest value of the cal-
ibrated correlation length. The variability observed in the cali-
brated values may be a consequence of the radiometric reso-
lution of the sensor and may also reflect the spatial variability
between the roughness conditions of fields belonging to each
class.

The calibrated values and their respective measure-
ments show a clear exponential or power-like relationship
[Fig. 7(a)], similar to the results observed by Baghdadi et al.
[24], [25]. Further observations are needed to confirm this
relationship and its dependence on the sensor configuration.

The results obtained using values were similar to those
obtained using measurements (Fig. 8 and Table XI). At the
field scale results improved slightly for the class “Cereal” and
increased for the class “Rolled vegetables. ” Results improved
significantly for the “Ploughed” field although error values were
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TABLE XI
ROOT MEAN SQUARE ERROR (rmse) VALUES OBTAINED IN THE IEM

SIMULATIONS. � rmse REFERS TO THE ERRORS OBTAINED IN THE FORWARD

MODELING AND SM rmse REFERS TO THE ERRORS OBTAINED IN THE

INVERSE MODELING. l VALUES WERE USED IN THE SIMULATION

TABLE XII
ROOT MEAN SQUARE ERROR (rmse) VALUES OBTAINED IN THE IEM

SIMULATIONS. � rmse REFERS TO THE ERRORS OBTAINED IN THE FORWARD

MODELING AND SM rmse REFERS TO THE ERRORS OBTAINED IN THE

INVERSE MODELING. l VALUES WERE USED IN THE SIMULATION

still high (Table XI). At the catchment scale the SM estimation
error increased slightly to a value of 0.048 cm cm .

On the other hand, results obtained using values were
significantly worse (Table XII). This is a consequence of the in-
creased difficulty in the inversion of due to the small slope
of the relationship at high values (Fig. 6). This difficulty
is clearly reflected in the high standard deviations of the class
average values obtained (Table X); small inaccuracies in
the observations result in high errors in the inversion.

It can be observed that the main reason for the dispersion ob-
served at the field scale is not an deficient field measurement of
surface roughness, except for the “Ploughed” class, where the
calibrated value was significantly different from the mea-
sured . The dispersion can be attributed rather to the variability
of surface roughness parameters between fields belonging to a
same class that in this study was considered as being homoge-
neous. The high standard deviation of surface roughness mea-
surements at each roughness class (Table II), can result in very
different SM estimations because of the great sensitivity of the

to those roughness parameters, in particular [7]. It thus
seems difficult to obtain accurate roughness parameters repre-
sentative of a tillage class due to their great spatial variability
and their influence on the backscattering process.

Apart from that, the reduced sensitivity of to the dielec-
tric constant in wet conditions leads to an overestimation of the
SM, sometimes resulting in unrealistic SM values (i.e., values
higher than 0.5 cm cm ). In these cases, a simple interpre-
tation of the results can partially solve the problem assigning a
maximum (saturated) SM value to those fields yielding values
above saturation.

In conclusion, the strong influence of the surface roughness
conditions on the scattering process and their variability makes
it difficult to obtain accurate SM estimates from RADARSAT-1

data at the field scale. However, at the catchment scale, the influ-
ence of the roughness variability seems to be reduced yielding
encouraging results.

V. CONCLUSION

The present research addressed the issue of the operational
ability of RADARSAT-1-based surface soil moisture estimation
SM . At the field scale, the results obtained highlight the need

of accurate surface roughness measurements in order to ade-
quately estimate SM. The great spatial variability of the surface
roughness and the sensitivity of the backscattering coefficient to
the roughness parameters make it difficult to obtain roughness
parameters representative of a tillage class.

At the field scale, an elevated dispersion between IEM sim-
ulations and observations was evidenced, leading to high error
values. The main reason for the dispersion observed seems to
be related to the spatial variability of the surface roughness pa-
rameters, particularly . This great variability makes it difficult
to obtain roughness measurements representative of a certain
tillage class, especially over smooth surface conditions. There-
fore, if accurate radar-based SM estimations are needed very
detailed roughness measurements are required, which reduces
the applicability of this approach in an operational manner.

At the catchment scale however, IEM simulations were in
good agreement with observations. The error values obtained in
the inverse simulations were in the range of in situ SM mea-
suring methods (0.04 cm cm ). Taking into account the
small size of the experimental catchment studied in this research
(160 ha) these results are encouraging from a hydrological point
of view.

It must be pointed out that catchment average soil moisture
estimations can be very helpful when applying hydrological
models. These values can, for instance, be used for the deter-
mination of the antecedent moisture content in runoff-discharge
models [44], for the calibration of the catchment hydraulic pa-
rameters [45] or for improving the performance of hydrological
models and land atmosphere transfer schemes through data as-
similation techniques [46], [47].
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